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Abstract 

Heavy metal contamination of agricultural lands poses serious threat to food security. Lead (Pb) 
and Chromium (Cr) are among the most toxic heavy metals reported but least studied. Their 
presence in soils has detrimental effects on crop productivity. Among different ways of 
remediating contaminated sites, phytoremediation technology like phytoextraction is now 
receiving greater attention. It involves the use of plants for cleaning heavy metal polluted media. 
It is environment-friendly, aesthetically appealing, cost-effective and can be applied in-situ. The 
plant species that are used for this process are metal tolerant and some of them called 
hyperaccumulators possess the ability of accumulating high concentrations of specific metals in 
the above-ground tissue. They have developed several mechanisms both at the genetic and 
molecular levels for their adaptability and efficiency. The molecular mechanisms could either be 
enzymatic or non-enzymatic. The enzymatic mechanism involves the participation of different 
antioxidant enzymes while the non-enzymatic strategies are based on the production of different 
antioxidant compounds for scavenging reactive oxygen species which are produced in heavy-
metal stressed plants. For tolerance and metal accumulation in the above-ground parts of an 
hyperaccumulator, metal homoestasis through over-expression of different genes have also been 
reported. In this review, heavy metal toxicity, phytoremediation options and mechanisms of 
hyperaccumulation and tolerance in plants are discussed with focus on Pb and Cr.   

Keywords: Hyperaccumulation, Heavy metals, Phytoextraction, antioxidants, Contamination, 
Oxidative stress 

Introduction 

Rapid industrialization and urbanization have contributed greatly to ecosystem destruction and 
extensive contamination of the environment (Ogundiran and Osibanjo, 2008). Among the known 
contaminants, heavy metals are the most dangerous (Gupta and Gupta, 1998). Though there are 
some heavy metals that have biological uses and are required by plants and animals in minute 
quantity for metabolism, yet some do not have any known biological uses and are hazardous to 
both plants and animals. Examples of such metals are lead (Pb), arsenic (As), cadmium (Cd), 
chromium (Cr), mercury (Hg) etc. They reduce agricultural productivity by causing 
phytotoxicity and reduction in soil fertility (Adejumo et al., 2011). Heavy metal contaminated 
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soils also pose an increasing problem to human and animal health (CDC, 1991; Commission of 
the European Communities, 2001; ATSDR, 2007). Lead (Pb) is one of the most toxic elements. 

Lead is considered as a priority hazardous contaminant by European Union (EU, 2008). 
According to the Comprehensive Environmental Response, Compensation, and Liability Act 
(CERCLA), Pb also ranks number two out of 275 toxic substances in the environment (USEPA, 
2008). Agency for Toxic Substances and Disease Registry (ATSDR) also reported on the 
frequency of Pb occurrence and that Pb occurs in 1272 of the 1684 National Priority List (NPL) 
sites (ATSDR, 2007). This is because Pb has different uses for over 1000 years of human 
history. It is introduced into the environment through mining and smelting of Pb ore, glass 
manufacturing, lead-acid batteries, paints, fireworks and gasoline additives specifically, 
tetraethyl and tetramethyl-Pb (Panich-Pat et al., 2004; Amaya-Chavez et al., 2006; 
Padmavathiamma and Li, 2007). United States Geological Survey (USGS, 2006) reported that in 
2004, about 3,150,000 tons of Pb were extracted from the earth’s crust and brought into 
circulation. In 1983, 400,000 – 1,000,000 tons of mobilized Pb were disposed of with wastes 
from metal extraction (Nriagu and Pacyna, 1988). Lead has carcinogenic and genotoxic effects in 
humans. It is most dangerous to young children (ATSDR, 2007; USEPA, 2007; Pokhrel and 
Dubey, 2012). It has been reported to cause stress in plant by inducing excessive production of 
reactive oxygen species thereby causing lipid peroxidation and damage to protein molecules 
(Mukai et al., 2001; Verma and Dubey, 2003).  

Chromium is also one of the toxic heavy metals and it is categorized as an important 
environmental contaminant. It is the seventh most abundant metal due to its wide applications at 
the industrial scale (Panda and Choudhury, 2005). Chromium toxicity however depends on its 
oxidation state. Chromium (III) is less toxic than chromium (VI). It has biological uses and is 
required by animal in trace amounts unlike Chromium (VI). Their oxidation state also affects 
their solubility and bioavailability. Chromium (VI) is highly soluble in water while Cr (III) is 
less soluble. This makes Cr (VI) to be more mobile than Cr (III) and also more toxic (Han et al., 
2004). Chromium is highly phytotoxic and is also capable of inducing oxidative stress in plants 
and animals (Panda, 2003). It induces lipid per-oxidation and alters the activities of antioxidant 
enzymes (Zeng et al., 2011). Remediation of chromium and lead - contaminated sites is therefore 
pertinent. 

The remediation of metal contaminated soil has been carried out using different engineering and 
chemical-based techniques which are expensive, not environmentally- friendly and not 
applicable to large expanse of land (Yang et al., 2005; Padmavathiamma and Li, 2007). Effective 
remediation of contaminated sites is either through total removal or immobilization (Bolan et al., 
2003). Green technology is now being promoted for successful remediation of metal 
contaminated media. It involves the use of plants to clean or stabilize contaminants in the soil 
and water and is called phytoremediation. It is cost-effective, aesthetically pleasing, 
environmentally friendly and non-intrusive unlike other remediation options. More importantly, 
it can be used on a large expanse of land and can be applied in-situ thereby causing limited 
destructive impact on soil structure. Phytoremediation technology comprises of different 
methods among which phytoextraction is the widely adopted strategy. Plants that are capable of 
tolerating and accumulating high metal concentration in their tissues are used for 
phytoextraction. These plants are called hyperaccumulators (Baker and Brooks, 1989). In this 
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review, phytoremediation technology, different tolerants/hyperaccumulator plants that have been 
reported for phytoextraction of Pb and Cr are discussed. Mechanisms involved in heavy metal 
hypertolerance and hyperaccumulation, heavy metal distribution in an excluder/non-
hyperaccumulator and hyperaccumulator plants are also enumerated. 
 
Phytoremediation 
 
Phytoremediation is the use of plants for cleaning up of metal-contaminated sites. It is a group of 
technologies that use plants to degrade, immobilize environmental toxins (Cunningham and 
Berti,. 2000; Li et al., 2003; Peer et al., 2003). Phytoremediation science can be traced back to 
1980 after the discovery of hyperaccumulator plants (Brooks, 1998; Saxena et al., 1999). It is 
also known as phytorestoration (the use of plants for complete restoration of contaminated sites). 
It is rapidly gaining adoption as a green solution to polluted environments. It makes use of the 
natural processes in plants for ion uptake and absorption (McGrath et al., 2002). Six aspects of 
phytoremediation have been described. These are: Phytoextraction (the use of plants to remove 
contaminants from soil); Phytodegradation (degradation of organic pollutants by compounds 
secreted by plant); Phytovolatilization (volatilization of absorbed contaminants by plants); 
Rhizofiltration (the use of plants to remove contaminants from water); Phytostabilization (the use 
of plants to immobilize contaminants or accumulate contaminants in the root) and Rhizophere 
degradation (the use of rhizophere microorganisms to degrade pollutants) (Shah and Nongkynrih, 
2007). The choice of phytotechnology depends on the type of contaminants, site conditions, 
quantity of contaminants to be removed, and the species of plants to be used for the process. For 
instance, two types of phytoremediation strategies are commonly employed for restoration of 
heavy metal polluted land; phytostabilization and phytoextraction (Padmavathiamma and Li, 
2007). Successful application of these methods however, depends on the ability of the plant 
species to tolerate, exclude or accumulate metals in their tissues. Phytoextraction strategy 
demands that plants must be tolerant and be able to accumulate high concentration of metals in 
their above-ground tissue. Careful investigation and identification of naturally occurring metal-
tolerant plants or hyperaccumulators have been described as effective processes for effective 
phytoextraction of heavy metals in contaminated media (Mudgal et al., 2010). 
 
Metal hyperaccumulators  
 
These are particular groups of vascular plants which have been identified and are capable of 
tolerating and accumulating high metal concentrations in their above-ground tissues (Baker and 
Brooks, 1989; Prasad and Freitas, 2003). The term “hyperaccumulator” describes a number of 
plants that belong to distantly related families, but share the ability to grow on metalliferous 
soils. They can accumulate extraordinarily high amounts of heavy metals in the aerial organs, far 
in excess of the levels found in the majority of species, without suffering phytotoxic effects 
(Baker and Brooks, 1989; Chaney et al., 2005). More than 450 plant species are known as 
hyperaccumulators (Reeves, 2006). They are found in 45 different families, with the highest 
occurrence among the Brassicaceae family (Reeves and Baker, 2000). They include trees, 
grasses and weeds (Pulford and Watson, 2003). Metal accumulating species are different from 
non-hyperaccumulators in that they have enhanced rate of heavy metal uptake, a faster root-to-
shoot translocation and a greater ability to detoxify and sequester heavy metals in their tissues 
(Brooks, 1998). According to Bakers and Brooks (1989), plant can be classified as an 
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hyperaccumulator of a specific metal if it accumulates more than 100 μg g-1 dry weight of Cd, 
1,000 μg g-1 dry weight of either Ni, Cu, Co or Pb, and 10,000 μg g-1 dry weight of Zn and Mn. It 
therefore means that, classification of plant as an hyperaccumulator depends on the metal 
involved (Brooks et al., 1977).   
 
However, hyperaccumulators are able to perform their roles through morphological, genetical 
and molecular mechanisms (Blaylock et al., 1989; Wang et al., 2011; Hossain et al., 2012). 
Generally, unlike non-hyperaccumulators, hyperaccumulator roots appear to be actively involved 
in transporting metals to the vascular system and up into the shoots in order to keep root 
concentrations relatively low and shoot levels high, against the concentration gradient 
(Verbruggen et al., 2009; Fahr et al., 2013). Some of the processes involved in 
hyperaccumulation of trace metals from the soil to the shoots by hyperaccumulators include: (a) 
bioactivation of metals in the rhizosphere through root–microbe interaction, (b) enhanced uptake 
by metal transporters in the plasma membranes, (c) detoxification of metals by distributing to the 
apoplasts like binding to cell walls, (d) chelation of metals in the cytoplasm with various ligands, 
such as glutathiones, phytochelatins, metallothioneins and metal-binding proteins, (e) 
sequestration of metals into the vacuole by tonoplast-located transporters and (f) constitutive 
overexpression of metal transporter genes which encode transmembrane movement of metals 
(Verbruggen et al., 2009). These transporters, include, ZIP, HMA, MATE, YSL and MTP 
families (McDonald, 2006; Revathi, 2013). 
 
Similarly, the general features or characteristics of a good hyperaccumulator as given by Mudgal 
et al. (2010) include; high level of tolerance to a specific metal, high capacity for absorption of 
metals, efficient root to shoot translocation, ability to detoxify metals or concentrate metals in 
non-sensitive parts of the cell, rapid growth rate and ability to accumulate metals at a 
concentration which will be 100 times higher than that of non-accumulator. To overcome the 
stress of metal toxicity, hyperaccumulators/hypertolerant plants also have selected physiological 
strategies which help them to remove the toxic ions from the most sensitive subcellular 
organelles thereby concentrating it in the cell wall or sequestering it in the vacuole (Clemens, 
2001). Some excrete metals into the apoplast to reduce internal metal bioavailability (Clemens, 
2006).  

Mechanisms of Pb Hyperaccumulation and tolerance 

Among the several plant species reported for metal hyperaccumulation, very few are capable of 
accumulating Pb (Baker, 1981; Baker and Whiting, 2002). About 5 species of plants have been 
reported to hyperaccumulate Pb compared to 26, 24, 8 and 145 reported for Co, Cu, Mn and Ni 
respectively (Peer et al., 2003) with Ni having the highest number. These five commonly 
reported Pb hyperaccumulators are America mantina, Thlaspi rotundifolium (L.) Gaudin, Thlaspi 
arvense L, Allysums species and Polycarpa spp.  Generally, the transportation and detoxification 
of metals in plants are mediated by different types of ligands which are produced for chelation 
and sequestration of metals (Abdul et al., 2001; Verbruggen et al., 2009). It is believed that 
majority of the plants do not have specific channels for Pb uptake unlike other metals, hence the 
element gets into the plants by binding to the carboxylic acid groups of mucilage uronic acids on 
root surfaces (Morel et al., 1986; Sharma and Dubey, 2005) while the unbound Pb move through 
Ca channel and accumulate near the endodermis (Huang and Cunningham, 1996; Huang et al., 
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1997; Antosiewicz, 2005). In some plants, it has been reported that Pb can be transported via 
vascular tissues to aerial parts through complexation with organic molecules (Hanc et al., 2009). 
It is transported in Sesbania drummondii (Rydb.) Cory, to the leaves after complexation with 
acetate, nitrate, and sulfide (Sharma et al., 2004). In tobacco, a cyclic nucleotide gated channel 
(NtCBP4) was suggested to be involved in Pb transport (Sunkar et al., 2000). In cytoplasm, Pb is 
chelates with phytochelatins which in turn enhances its upward movement (Estrell et al., 2009; 
Fahr et al., 2013). The complexes formed are then sequestered in the vacuoles. Some plant 
species like Allium cepa L, Hordeum vulgare L. and Zea mays L are also tolerant to Pb through 
these processes of complexation and inactivation (Sunkar et al., 2000).  

A number of protein and non-protein thiols like gluthathione and phytochelatins together with a 
network of sulphur containing molecules and related compounds also contribute to plant stress 
tolerance and metal transport from root to shoot (Álvarez et al., 2012; Zargorchev et al., 2013). 
Glutathione (Glu-Cys-Gly; GSH) and phytochelatin (GluCys)n Gly (where n = 2–11) are major 
cellular antioxidants reported (Verbruggen et al., 2009). They form complexes with several 
metals. According to Clemens (2006), phytochelatins are synthesized from glutathione under 
high metal stress. Gluthathione is therefore the precursor of phytochelatins. Their induced 
production in metal-stressed plants provides protection against oxidative stress. Hossain et al. 
(2012) reported that GSH by itself and its metabolizing enzymes—notably glutathione S-
transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, 
glyoxalase I and glyoxalase II - act additively and coordinately for efficient protection against 
reactive oxygen species induced damage in addition to detoxification, complexation, chelation 
and compartmentalization of heavy metals. Increased production of glutathione in T. goesingense 
and other Thlaspi Ni hyperaccumulators has been reported to be responsible for their protection 
against oxidative damage under high Ni concentrations (Freeman et al., 2004; Papoyan and 
Kochian, 2004). Root enhanced detoxification mechanisms through the participation of 
gluthathione reductase, ascorbate peroxidase and gluthathione S-transferase which induced 
production of gluthathione has also been reported (Brunet et al., 2009). Similarly, enhanced 
glutathione synthesis in the leaf and root of T. caerulescens was induced under Cd exposure (van 
de Mortel et al., 2008).  

The PIB-type Heavy Metal ATPases (HMAs) are also implicated in the transport of different 
essential metals and potentially toxic metals across the cell membrane (Sanchez-Fernandez  et 
al., 2001; Gravot et al., 2004). They are involved in acquisition and compartmentation of 
macronutrients as well as toxic heavy metal absorption and detoxification. Expression of the 
glutahione-Cd vacuolar transporter gene, YCF-1 in Arabidopsis has been found to increase the 
tolerance and slightly increases the accumulation of Pb (Song et al., 2003). The Zn cluster 
proteins which transport Zn also transport Cd and Pb and play a role in metal detoxification 
(Axelsen and Palmgren, 2001; Mills et al., 2003). The induction of AtHMA3 gene expression 
under Cd and Pb exposure is also assumed to be playing a role in gluthathione synthesis (Kim et 
al., 2006). The GSH1 transgenic India mustard was found to accumulate 2-3 folds more Cr, Cu 
and Pb compared to the wild type (Bennett et al., 2003). Overexpression of GSH1 genes in 
Arabidopsis spp was also reported to increase phytochelatin synthesis (Guo et al., 2008). This 
increase in phytochelatin synthesis in response to Pb and formation of PC-Pb complexes was 
confirmed by Piechalak et al. (2002). Phytochelatin syhnthesis is also induced in the root and 
stem of an hyperaccumulator Sedum alfredii. Hance, when exposed to 700µM lead (Zhang et al., 
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2008).  It was found that Pb and Cd exposure induced the synthesis of phytochelatin in marine 
diatom (Phaeo-dactylum tricomutum) (Morelli and Scarano, 2001). According to Mishra et al. 
(2006), production of phytochelatin is very important in Pb tolerance and detoxification. Lead 
tolerance in Coontail (Ceratophyllum demersum L ) was also found to be mediated by PCs with 
concomitant decrease in gluthathione (its precursor) under Pb exposure. Different phytochelatin 
synthase genes have been cloned from different crops after exposure to heavy metal stress; Rice 
(OsPCS1), Wheat (TaPSC1), Arabidopsis thaliana (AtPCS1) and Brassica juncea (BjPSC1) 
(Heiss et al., 2003). These genes were found to be up-regulated under heavy metal stress. Gisbert 
et al. (2003) reported a genetically modified Nicotiana glauca R. Graham (Shrub tobacco) was 
able to accumulate Pb through enhanced gene expression. It was reported that the gene encoding 
phytochelatin synthase in wheat (TaPCS1, Accession No. AF093752) increased the tolerance of 
bioengineered N. glauca to Pb.   

Gupta et al. (2004) however, reported that Pb detoxification in Sedum alfredii H is related to 
gluthathione not phytochelatins. Similarly, Zhao et al. (2003), were of the opinion that PCs are 
generally not essential for the hyperaccumulation phenotype. It was reported that arsenic, which 
is normally a very effective inducer of PC synthesis in other species, only induces smaller 
amount of PC in the roots of the As hyperaccumulator, Pteris vittata (Zhao et al., 2003). An 
increase in the GSH concentrations in a hyperaccumulating S. alfredii population, and not in a 
non-accumulating one was also reported and the decrease in GSH of non-hyperaccumulator, was 
said to be due to PC synthesis (Sun et al., 2007). These results therefore suggest that there is a 
role for GSH in hyperaccumulation than phytochelatin. This was further corroborated by several 
reports that PCs might have a role in basal metal detoxification but they do not seem to be 
involved in Cu, Cd, Zn, Co and Ni hypertolerance (Ebbs et al., 2002; Schat et al., 2002; 
Hernandez-Allica et al., 2006). It was found that PCs are mainly induced in the roots, in 
particular by Cd, but not (or barely) by Zn or Ni in hyperaccumulators, just as in non-
hyperaccumulators. Meanwhile, Zhang et al. (2008) reported that using high-performance liquid 
chromatography (HPLC), HPLC-mass spectrometry, and HPLC-tandem mass spectrometry, PC 
synthesis and formation in the mine population of S. alfredii was induced in the leaf, stem and 
root tissues upon exposure to 400 μM cadmium, and only in the stem and root when exposed to 
700 μM lead. However, no PCs were found in any part of S. alfredii when it was exposure to 
1600 μM zinc. These results suggest that PC synthesis is a function of metal involved and 
concentration dependent. Furthermore, the nature of the chelators is said to be different 
depending on the location within the plant and the age of the plant (Salt et al., 1999). 
Phytochelatin alone might therefore not be as important as was earlier reported for some metal 
accumulation and tolerance. Other mechanisms might therefore be involved in Pb tolerance and 
detoxification.  

Metallothionein (HiMT2a) and PIB-type-ATPase (HiHMA4) encoding gene, for instance, were 
also over-expressed or induced by Pb exposure in Hirschfeldia incana (L.) Lagr.-Foss, a 
Brassicae (Auguy et al., 2013). This reportedly enhanced Pb tolerance and accumulation by this 
species and the genes were similar to those reported in Arabidopsis thaliana (L.) Heynh.; 
AtHMA4 and AtHMT2a respectively. AtHMA3 also function as Cd/Pb transporter in yeast 
(Gravot et al., 2004) while OsHMA9 gene was reported to confer tolerance to rice under high 
levels of Cu, Zn and Pb (Lee et al., 2005). Over-expression of Nicotiana tabacum plasma 
membrane protein (NtCBP4) that binds calmodulin in transgenic plants confers Pb2+ tolerance 
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and enhanced Pb2+ accumulation. NtCBP4 and its homologous gene in Arabidopsis thaliana 
(AtCNGCI) are also components of a transport pathway responsible for Pb2+ entry into plant 
cells (Sunkar et al., 2000). Similarly, for tolerance, expression of PbtABC or PbtA in a metal 
sensitive E.coli are said to induce Pb2+ Cd2+ and Zn2+ tolerance by decreasing accumulation 
(Hložková  et al., 2013). The characterization of Pbt genes conferred increased Pb2+ and Cd2+ 
tolerance on Achromobacter xylosoxidans A8 (Hložková  et al., 2013). Lead accumulation was 
in turn enhanced in E. coli expressing Pb uptake transporter (PbtT) and Pb resistance was 
achieved in Cupriavidus metalidurans through the cooperation of the Zn/Cd/Pb translocating 
ATPase (PbrA) and undecaprenyl pyrophosphate phosphatase (PbrB) (Hynninen et al., 2009; 
Morel et al., 2009). The later (PbrB) catalyses the production of phosphate salt which 
presumably binds with Pb2+ after it has been translocated by PbrA and Pb is sequestered as Pb 
phosphate salt. Pb tolerance and detoxification was therefore achieved through metal 
sequestration/detoxification and active efflux processes by different enzymes and transporters.  

Other metal transporters and accumulation ligands in plants which have been reported include: 
proline, glycine betaine, histidine, nicotianamine, organic acids (citrate, malate) and 
metallothioneins. Though information about the involvement of these ligands in Pb 
hyperaccumulation is few, they have all been reported to be involved in metal 
hyperaccumulation and tolerance. Histidine (His) and proline are considered as the most 
important free amino acids involved in metal hyperaccumulation and tolerance. It has been 
reported to form complexes with different heavy metals in the hyperaccumulator’s root (Persans 
et al., 1999; Callahan et al., 2006). Enhanced expression of ATP-phospho-ribosyl transferase 
which is the first enzyme of the histidine biosynthetic pathway was reported in Ni 
hyperaccumulator A. lesbiacum, for  Ni tolerance compared with A. montanum; a non-
accumulator  (Ingle et al., 2005: Kerkeb and Kramer, 2003). A dose-dependent increase in 
histidine in the xylem sap and increased Ni concentrations in xylem sap, which was not found in 
the non-hyperaccumulator, A. montanum was also reported in the hyperaccumulator. 
Accumulation of proline and glycine betaine in plants growing under different stress conditions 
has been well reported (Trovato et al., 2008; Adejumo et al., 2015). They are described as potent 
antioxidants, osmoprotectants and ROS scavengers. High proline accumulation has been reported 
in plants growing on metalliferous soils most especially the Pb hyperaccumulator, Gomphrena 
celosoides (Adejumo et al., 2015). It is therefore concluded that this osmolyte must be playing a 
major role in Pb hyperaccumulation and tolerance. Similarly, glycine bentaine which is a 
quartennary amino acid has also been implicated in Pb tolerance and detoxification (Chen and 
Murata, 2011).  

Though, synthesis of nicotianamine (NA) from 3 S-adenosyl-methionine (SAM) by NA synthase 
(NAS) is present in all plants, it has also been reported to be involved in metal 
hyperaccumulation, both in A. halleri and T. caerulescens (Becher et al., 2004; Weber et al., 
2004; Mari et al., 2006; Talke et al., 2006; Callahan et al., 2007). In these plants, several NAS 
genes showed higher expression. It is said to form strong complexes with most transition metal 
ions (Stephan and Scholz, 1998) where it participates in the distribution of micronutrients. Over-
expression of several members of metallothioneins family (type 1, 2 and 3) have also been 
reported for T. caerulescens (Roosens et al., 2004; Rigola et al., 2006; Hassinen et al., 2007; 
Guo et al., 2008).  
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Mechanisms of Cr Hyperaccumulation and tolerance 

Plants vary in their ability to accumulate Cr. The most common methods being employed for Cr 
uptake and translocation are similar to those reported for other metals. Root exudates, such as 
organic acids increase the solubility and mobility of Cr in the soil. It is then transported through 
the root xylem and finds its way into the plants by reduction and/or complexation (Bluskov et al., 
2005). Shanker et al. (2005) reported that both Cr (VI) and Cr (III) enter into the root cells by the 
symplast pathway where Cr (VI) is reduced and accumulated in the cortex. Few Cr 
hyperaccumulators have been identified. This is because Cr exists in an insoluble form (Cr3+) 
thereby not available for metal uptake and therefore a few plant species have been reported for 
Cr. As reported for Pb, majority of Cr hyperaccumulators are from Brassicacae family 
(cauliflower, kale and cabbage). Indian mustard Brassica juncea L. (zem) and sunflower 
(Helianthus annus L.) have been reported to accumulate Pb, Cr, Ni, Cu and Zn (Asuncao et al., 
2006). The leaves of Diccona niccolifera and Sutera fodina have been found to accumulate 
1500µg /g and 2400µg/g Cr (Wild, 1974; Baker and Brooks, 1989). Lepertospermum scoparium 
contains up to 1% Cr (Lyon et al., 1971). Sutera fadina and Diccona niccolofera accumulate 
48000 and 30000 µg/g Cr in the ash respectively (Peterson and Girling, 1981). They absorb more 
Cr than other plant species with on observable symptoms of toxicity to the plant (Zayed and 
Terry, 2003). 

Choosing target genes for hyperaccumulation and tolerance 
 
Since majority of known hyperaccumulators are low biomass, small crawling and difficult to 
cultivate, the new strategy being proposed for effective phytoremediation is the development of 
hyperaccumulating plants that will be of high biomass and can be easily cultivated (Mudgal et 
al., 2010; Hassan and Aarts, 2011). Choosing or cloning of the genes of desirable traits for the 
transformation process is however, a multitasking approach. This is because heavy metal 
tolerance is not a monogenic trait. Many genes are involved in hyperaccumulation and tolerance 
(Lee et al., 2003). Different genes are involved in metal uptake, translocation, sequestration and 
detoxification (Verret et al., 2004). To achieve effective phytoextraction therefore, several genes 
will need to be transferred to the proposed plant species for phytoremediation as there might be 
no correlation between the tolerance and hyperaccumulation. Therefore, the genes responsible 
for each process must first be identified. A good hyperaccumulator must constitute an 
exceptionally high biological material and gene reservoir which makes it adaptable to 
contaminated environment. Overexpression of existing genes is usually a common process for 
adaptation (Taji et al., 2004; LeDuc et al., 2004). However, according to Asuncao et al. (2006), 
only a few genes are responsible for hyperaccumulation using classic genetic studies and QTL 
analysis. In all, the complexity of transport mechanism within the plant puts a demand on the 
study of different metal transporter genes in plants (Hanikenne et al., 2008; Kim et al., 2009). 
Hyperaccumulation is said to start from metal uptake from soil, metal partitioning to different 
organs and different cell organelles and detoxification or sequestration process occurring in the 
vacuole. Enhancement of the activities of metal transporters from soil to root, root to shoot and at 
the cellular level will go a long way in improving the metal accumulation and tolerance in plant.  
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Metal uptake and absorption from the soil 

Absorption of either essential or non-essential elements by plants is the most critical process that 
precedes and determine the translocation and accumulation of mineral ions including heavy 
metals (Argu¨ello, 2003). Metal absorption or uptake is particularly important in 
hyperaccumulation process. Several genes encoding transporter proteins mediating the influx and 
efflux of metals have been identified at the plasma membrane of the root epidermal cells (Awaad 
et al., 2010). These include Cation Diffusion Facilitator (CDF), Natural resistance-associated 
macrophage protein (Nramp), ATP Binding Cassette (ABC), Zinc Iron-like Protein (ZIP) and 
others (Clemens, 2006; Kramer et al., 2007). 

Zinc and Iron regulated transporters (ZIP) 

These are believed to be playing important roles in the uptake of metal ions by the plant’s root. 
In Zn hyperaccumulators (Thlaspi caerulescens and Arabidopsis halleri), these genes have been 
reported to be over expressed (Kramer et al., 2007).  PIB-type ATPases (HMAs) are other 
important transporter enzymes known as P-ATPases which are responsible for the movement of 
metal ions from root cytosols to the plant vascular system. These are called heavy metal 
transporting ATPases (HMAs) or PIB-type ATPases (Deng et al., 2013). They use the energy 
from ATP hydrolysis for transporting metals against concentration gradients (Morel et al., 2009). 
HMAs are involved in metal hyperaccumulation and hypertolerance. Among the 46 genes 
identified in Arabdopsis, eight of them belong to this group (Baxter et al., 2003), for example, 
HMA3 is one of the transporters commonly implicated in metal hyperaccumulation and tolerance 
processes. Ectopic overexpression of AtHMA3 improved plant tolerance to Cd, Co, Pb, and Zn. 
Cd accumulation increased by about 2- to 3-fold in plants overexpressing AtHMA3 compared 
with wild-type plants (Baxter et al., 2003). Thus, AtHMA3 likely plays a major role in the 
detoxification of biological (Zn) and non-biological heavy metals (Cd, Co, and Pb) by 
participating in their vacuolar sequestration (Verret et al., 2004; Morel et al., 2009). HMAs can 
be divided into two subgroups based on their metal-substrate specificity: a copper/silver group 
and a zinc / cobalt / cadmium / lead group (Morel et al., 2009). Arabidopsis AtHMA1-4 are 
known for transporting Cd, Pb and Zn while HMA 5-8 are for Cu and Ag (Mills et al., 2003; 
Takahashi et al., 2012). AtHMA3 is described as a pseudogene in the wild-type Columbia (Col-
0) ecotype (Hussain et al., 2004; Auguy et al., 2013).  

Metal ligands complexes transporters (MATE)  

These are involved in the long distance transport of metal from root to shoot of an 
hyperaccumulator. However, availability of metal for translocation to the shoot is a function of 
the root’s ability to release or withhold this metal. The non – hyperaccumulators retain the 
highest proportion of metals in their root or sequester the metals in the root vacuoles as observed 
in Thlaspi arvense, a non-accumulator (Lasat et al., 1998). Only the hyperaccumulators store 
heavy metals in the cytosol and then make it available for upward transportation to the shoot. 
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Availability of metals for translocation to the shoot implies limited sequestration in vacuoles of 
root cells (Baxter et al., 2003; Yang et al., 2005; Xing et al., 2008). FRD3 which is a member of 
MATE has been reported to be actively involved in citrate efflux in the root vascular system and 
is said to be responsible for the upward movement of Fe in plant. Gene responsible for citrate 
production has also been found to be overexpressed in Zn hyperaccumulators compared to non-
hyperaccumulators (Talke et al., 2006). More importantly, efficient translocation of metal ions 
from root to the shoot requires radial symplastic passage and continuous loading of the metals 
into the xylem (Clemens et al., 2006: Xing et al., 2008). Salt et al. (1999) reported that most of 
the Zn in the xylem sap of T. caerulescens was present as the free hydrated Zn2+ ion. Yellow-
stripe L-like (Ym vSL) subfamily which belongs to a family of oligopeptide transporters (OPT) 
gene is also over-expressed in some plants. TcYSL3 and TcYSL7 have been found to be 
displayed in the root vascular tissue of Thlaspi caerulescens (Gendre et al., 2007). Arabdopsis 
thaliana OPT also transport Cd-gluthathione complexes in the vascular system (Cagnac et al., 
2004).  

Cation Diffusion Facilitator (CDF) family:  

They help in preventing cellular damage. Heavy metals are generally chelated by low molecular 
weight compounds, sequestered into organelles or expelled to the extracellular space by specific 
transporters known as Cation Diffusion Facilitator (CDF) family. They are also known as the 
Metal Tolerance Proteins (MTPs) in plants. They specialize in transporting divalent metals such 
as Co2+, Pb2+, Ni2+, Mn2+, Cd2+, Fe2+ and Zn2+ (Persans et al., 2001; Delhaize et al.,2003). 
Vascular transporters such as ShMTP (Stylosanthes hamata Metal Transporter Protein), AtMIPI 
or Zn transporters of Arabdopsis thaliana are said to be involved in the conferment of tolerance 
and accumulation traits in Stylosanthes and Arabdopsis for the accumulation of Mn and Zn 
respectively (Delhaize et al., 2003).  

ABC (ATP-Binding Cassette) transporters and Cation Exchangers Proteins (CEP)  

They are involved in the vacuolar sequestration of various metals and they may be expected to 
contribute to trace metal hyperaccumulation, in particular to vacuolar sequestration. CAX is the 
acronym commonly used for cation exchanger. It consists of two subfamilies, MRP and PRD, 
and they are involved in the transport of chelated heavy metals or the organic acids necessary for 
the transport of heavy metals. AtPDR12 which is an ABC transporter has been reported to 
contribute to Pb2+ resistance in Arabidopsis (Lee et al., 2005). This member of the pleiotropic 
drug resistance (PDR) subfamily of ABC transporters in Arabidopsis according to Lee et al. 
(2005) has a role in Pb2+detoxification. The expression of AtPDR12 was found to be strongly 
induced by Pb2+treatment and that AtPDR12-knockout plants were more sensitive to Pb2+ than 
wild-type plants while AtPDR12-overexpressing plants are more resistant to Pb2+ than wild-type 
plants. In addition, AtPDR12 knockout plants also contain more Pb2+ than wild-type plants. 
AtPDR12 was able to confer Pb2+ resistance by pumping Pb2+ out of the cell from the cytoplasm.  
Two ABC genes were also identified in T. caerulescens: the AtMRP10 and ATH13 homologues. 
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AtMRP10 was shown to be differentially expressed in the shoots of two T. caerulescens 
populations displaying contrasting Zn tolerance and accumulation (Hassinen et al., 2007) while 
ATH13 was more expressed in the shoot compared with A. thaliana (van de Mortel et al., 2008). 
Though, superfamily of ABC (ATP-binding cassette) transporters is involved in many 
physiological processes but they are mostly involved in metal vacuolar sequestration (Hassinen 
et al., 2007). Members of other CaCA subfamilies may also play a role in metal detoxification 
(Korenkov et al., 2007). AtCAX2 and AtCAX4 have been implicated for the transport of Cd2+ 
into the vacuoles. Under the activity of the constitutive 35S CaMV promoter, overexpression of 
AtCAX2 and AtCAX4 resulted in higher accumulation of Cd in the root vacuoles (Korenkov et 
al., 2007).  

Conclusion 

Plant tolerance and hyperaccumulation mechanisms require the coordination of complex 
physiological and biochemical processes, including changes in gene expression. Heavy metal 
(HM) transporters play key roles in the uptake, transport, sequestration and efflux of metals and 
are among the most studied homeostatic genes relating to metal tolerance and accumulation 
abilities. Several heavy metal transporters which have been cloned and characterized from 
various metal tolerant and hyperaccumulating plants have been reported. They regulate metal 
accumulation and transport in plants and so, are important candidate genes to study in metal 
tolerant and accumulator plants for their potential use in environmental cleanup.  
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