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Abstract

A mathematical procedure on the self-organizatiomgess involving the colony of bees
which results in the construction ofthe honey-cévabing hexagonal cross section and
optimal capacity is presented in this paper. Thémgl capacity of the honey comb as
well as the bee farmer’s profit are also considerdt employ the notion of the distance
function in our presentation.
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Introduction

In nature, there exists the phenomenon of systehishvat a stage lbok certain to be going
to end up in a state of confusion, chaos, uncgrt@n nstabiity but just emerges nto a
state of order, stabiity, regularity without a bls control agent or external influence
being responsble for this tum around. These &e dystems being referred to by some
cyberneticians as ‘sef-organizing systems’

A sef-organizing system is one which controls fitgmplicity. One of the meanings of

self-organizng systems is that a “self-organizsystem is one that changes itself from a
bad way of behaving to a good one”. This meaningaRicularly interesting to us because
of the word ‘“itsef’” in the defintion. There is neeparate control unt that effects the
change. The system changes tseff. For this (Ashbyéfintion of self-organizing system,

we refer to Adeagbo-Sheikh, (2003).

According to Beer, (1978), in his definiion of fsaiganizing systems, “in nature, the
structure of contral -its effective organizatios- mot moniored by a pantheon of directors
which decide to change the structure. The strucjust changes’. Adeagbo-Shekh,
(2003) gave a very general conceptual model onthbery of self-organizing systems. In
his model, “a sef-organzing system is a dynamicalystem such that whenever its
trajectory includes a certain point A, then it m@sten n the face of disturbances) later
include a certain point B”. Beer, (1978) cied cete examples of self-organizing
systems. For instance, the case of certain spiicgeshe cabbage aphides which, by the
rate at which they reproduce could overrun thehdaut are maintained in nature at a well
manageable population level. Also, the human formichv in every case develops with
parts growing in defnite stable proportions. Theed by their josting, faling and random
movements construct honeycombs that are hexaganadrass section and of optimal
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design as regards capacty as if the bees wereneergi that calculate and employ
sophisticated instruments that produce ths regidsign. There are many other examples
of sef-organizing systems cited in Beer, (1978)owdver, in this paper, we shall be
interested n presentng a mathematical procedurethe self-organization process which

results n the construction of an honeycomb of femal cross section and optimal
capacty. The optimal capacity of the honeycombwad as the farmer’s proft are also
considered in our presentation.

Actualy, the bees are prudent planners as thewnyshplan ahead of (tough) time. Due to
the fact that their movement is restrained durlmg tainy season, the bees prepare and
store food safely durihg the dry season for thayraeason. This food is known as honey.
It is nteresting to remark that the bee colonywisl-organized in the sense that the bees
employ the principle of divison of labour n cangy out ther actvties during honey
production. In the cobny, there is the queen, wakers and the duly committed soliers.
Whenever there is an external attack, the soldieesbattle-ready to wage war so as to
resist the attack. While some workers look for #ownectar and other ingredients
necessary for honey production, others fetch wéierthe same reason. Moreover, man

has remained as the co-competitor with the bediseirsharng of honey produced because
of ts medicinal and economic values to the mankindrious methods of beekeeping for

honey production are avaiabke. For instance, selionK (1951), Rope, (1962) and
Savage, (1961).

The working functions for the self-organization qaes nwoling the colony of bees
which resutts in the construction of an honeyconfboptimal capacty and hexagonal
cross section wil be determined in the next sectio

Dete mination of the working functions for the se forganization process involving
the bee colony.

We first recall the folowing definitions:

Definition 2 .1: The distance function(g(t) is the distance from the goal at tit)e(
satisfying the following properties:

h 9)>0,% =0

@ g'(t)<o,0st<t<ti<w

(i) 9gt)=0,0sph<t1<w

vy 19'0l<e

See Adeagbo-Sheikh, (2003) for this defintion.

Definition 2.2 : The working functions are those functions wheaalies correspond to
the attainment of seff-organization during a eedanization process. See also
Adeagbo-Sheikh, (2003).

We now formulate the problem as folows:
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Since the cross section of an honeycomb is chawscteby a number of hexagons,
then the voume (V) of an honeycomb becomes atinnof its height (h) and the
area of the entre number of hexagons. We assugte tie hexagons are regular
throughout this paper. Let the length of each sfddhe hexagon be x.

Voume (V)= area of base perpendicular height
e V =Ah (21

where A is the area of the entre number of theapems and A is taken as the base
area of the honeycomb; h is the thickness of theeymomb and it is regarded as the
perpendicular height.

area of an hexagon = 6. %R 60

3
Therefore, A :% nXZ, where n is the entire number of hexagons n asyoomb.

We assume that the thickness of each hexagon Igibleeg Thus, the volume of an
honeycomb is given by:

3 2
V= 7nX h, x=0, h=0, n=0,

e V=k®h x20,h>0 2.2)
where k %n, k>0,

The total surface area (S) of the honeycomb isnzeduo be a linear combination yof
andh. Thatis,

S=ax+ /h,a>0,5>0, (2.3)

wherea and 3 are constants having the dimensions of the lemddreover,a and3
can be determined experimentaly. A suitable empi that can be suggested is to
measureS, h and x for various honey-combs from which a suitable grapm be
plotted. The values afi and3 are then determined as the gradient and inteafetbte
line of best fit on the vertical axs.

From egn ( 2.3),

S—-oax
h= (2.3a)
B
By parametrzing egn (2.3a) in t, we obtain
h(t) :w (2.3)
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wheret s the time variableh(t) does not grow ndefintely with tme. The function
h{t) in egn (23b) is caled the distance-from-goalresgion for the colony of bees
which is self-organizing to construct an honeycowfb hexagonal cross secton and
optimal capacty (see Adeagbo-Sheikh 2003). Ourigrasent is to choose the
functions S(t) and x(t) so that egn (2.3b) becomes a distance functios. Vi be the
distance function corresponding to the colbny oksbewhich is self-organizing to
construct an honeycomb having hexagonal cros®eeetnd of optimal capacity.

S(t)=S(t) and
x(f) = X'(t) so obtained under this stuation wil be callee torking functions for the
sef-organization process.

In order to be able to find the working functiors the self-organization process, we
must recal the following results.

Theorem 2.1 Letg(t) be a smooth function of Then,g(f) is a distance
function for a self-organizing system, denoted $f¥(b,t1), if and ony if g(t) is
expressible n the form

9() = (trt)alt) (2.4)

where «ft) is a smooth, positive function in the open intenta,t;) such that
at)>(ts — k().

Corollary 2.1: A sufficient condition for smooth functiog(t) to be a distance function for
a seff-organization procestt(b,t;) is thatg(t) be expressible in the form

qt) = (tr)ald),
whereaft) is a smooth, positive monotone decreasing funditiofio,ty).
See Adeagho-Sheikh (2003) for the proofs of theoridm and its corollary.
Re-writing egn (2.3b) in the from of egn (2.4) y&l

t) — ax(t
h(t) = (t; _t)(MJ (2.5
Bty —t)
The 2-jet Oft with the constant term is given by
1-
2
t—lt :ti + LZ + t—3 (2.6)
1 1 t1 t1

See Bruce and Giblin (1992) for detail on the keéfunctions.
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Type (2.6) equation s often made use of n equagpe (2.5) to avoid singularty @tt;.

Thus, the transformed function becomes
2
1 1 t t
H() =< (L~ )| = +— + = |(S(t) —ax(t) (27)
B bty ot
2
whereaft) = i +i + L (S(t) - o(x(t)), 0sth<t<ty
tt t2 ¢

The first main resuk, herein gven as Theorem @rByvides the condiions under which
eqgn (2.7) represents the distance function for dbleny of bees which is self-organizng to
construct honeycomb of hexagonal cross sectionofiogtimal capacity.

Theorem 2.2:The functonH(t) defined by egn(2.7) becomes a distance functionthe
colony of bees which & self-organizing to congtrdmneycomb of hexagonal cross
section and optimal capacty if the folowing cdrahs hold:

()  Hl)>0,%=0
(i) If H(t) is a positive monotone decreasing function, then

(2t +t1)| S() —ax(t) K 2+t +t2) | S () -ax' ¢)],
Osto<t<ti<o;
(iii) H(t) =0, 0stp< t1< w;
(iv) S(t)s a positive monctone decreasing functipn
(V) X(t)is a postive monotone increasing function ;

(vi)  x(t) is bounded above A§‘(t))/ ie X)) < —— | S( )|
Proof (i): From egn (2.7),
1ty t2
H(t) = — (tl —to) — +_2 T3 (Sto) —0xX(tg)). 20
B bt t1
1 t, t2
SinceB >0, <t , — + —2 +%>0, thenH(to)>0 whenS(t)-ax(to)>0,
b otf 4
that is,
H(t)>0 whenx(to) < S(to) . a >0, thus proving (i).
a
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Proof (ii): Observe that

W (t) :_é{t_lz + %j(sa) - ax(t))+ {L L4 %J(S’(t) - ax’(t))}

1 by ¥ oy

Sincet; — t > 0 n eqgn (2.7) fort < t;, then H(t) s a postive monotone decreasing fomnct
when w(t) & a posive monotone decreasing function hyolary (2.1). Therefore,
differentiating egn(2.7) yields

2
Ht) =22+ L+ s - ax(t))+(t1—t)—+—<s<t) ax(t)
B |t t12 tf tl2 t1
1 t t2
+(t - t){—1 ok t—3]<s (t) - ax' ()]
1 1

101 t 2
_ | = S - —1) %
B[tl +t12 +tf]( (t) —ax(t)) + (tp —t)

F{l 2tJ(S(t) ax(t))+£i+i+ﬁ](5(t) GX(U)H
B t]_ t]_ i1 t1 t1

=-aft) + () W ()

<0, sinceat)>0 for S(t)-ax(t)>0,

and W (1)<0.
2
for %Jrg (SOaxO)+ £+i2+t— (S'W-ax (M) <0
tf t totf

le (b +20(SO-ax®)+ 2 + it +t2)(S' @O-ax ) <O.
(t+20)( SO-ax(t) >0, @+ tit + tf)( S'®)-ax' @) <0,

since t; + 2t > 0,( S (t)-ax(t))>0, (t2+ it + t%) >0.
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It implies that (S'(t)-a X' (t)). must be negative i€S'(t)-a X' (t)) <O.
Therefore,

(t+29( SO-ax)< - (@ + tit + tf)(S’(t)-ax’ ®) .
so that

It+29( SH)-ox®) [ < |- (& +tat + tf XS B)-ax"®) |
(t+20l( SO-ax®)) | < |- E+tat + tf)ll( S'®-ax (1) |

ie [t+20)[[( S(H-ax@®) | < (B +tit + tf)l (S'®-ax () |

Hence, fH(f) is a postive monotone decreasing function then

(2t+ty)] SH-ax(@®) [<E + tat + tf ) I(S'(®-a X" (1) |

This concludes the proof of (ii).

Proof (iii) : putthng t =t; n egn (2.7) yiedsH(t))=0, thus proving condition (ii).
Proof (iv) & (v): From the proof of (i) above ,

>0 whenS(t)ax(t)>0 and ' (t) <O whenS'(t)-ax' (t)<O.

We assume the® (t)>0 and x()>0 for S (tx(t)>0 gvesH(t)>0, or at) >0.

Also, S' (<0, X ()>0, a>0, since S'(t)-a x' (1)<0. It folows that S(t) is positive
monotone decreasing whikt) is positive monotone increasing.
S(t) SO
a a

Proof (vi) Since S(t)-ax()>0, then x(t) <—= from which we obtain| x(t) |<

t0< t < tl < o0,

Hence, the proof of the theorem is complete.

The next result, which folows from Theorem 2.2amguntees the choice of the working
functions for the colony of bees which is self-oigag to construct honeycomb of

hexagonal cross secton and optimal capacity.

Theorem 2.3Suppose that in the expression Koft) in eqn(2.7), the following
choces are made:

S(t)=S (H)=c1t”, c;>0, }<0 x(t)=x"(t) = c2t™m>0, ¢>0. Then,
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H(t) in egn (2.7) reduces to a distance function for the self-orgatmdn process of
the colony of bees resuling n the constructiorarofhoneycomb of hexagonal
cross section and of optimal capacity.

Proof Substituting forS(t)andx(t) n egn (2.7) yields

11t 2y m
0=(t-t). ={{| =+—+—[c.ty —ac,t 0t< t<t;  (28)
Bl 2 381 2
1 1
2
where aft) = 1 i+L+t— (C tY —ac tmj,a(t)>0,
1 1
() <0 for
1 2 m 1 t t?
—2+—3 (Clty—O(Czt )<- —+—2+—3 (yet¥™> macat™?),
tl tl 6] tl tl

wft) > 0 for ¢ >a ot
Therefore, by corolary (2.1)(t) is in the form

g(t)= (ta-t) alt).

So,I(t) is a distance function for the colony of bees twhicself- organizing to
construct an honeycomb of hexagonal cross sectiohogtimal capacity. Hence,
the choiceS (t)=cit¥, ¢, > 0, y< 0; X'(t) =cA™, ¢ > 0, m > Oappropriately
represents the working functions for the self-oigmtion process.

The sketch of the graph §f) s shown in the figure 2.1 below.
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|(t) A

I(t2) =0 , O<fo<ti< o0

v
—

0 to 1:1

The Graph of Distance functiof(t)) aganst tme(t)
Figure 2.1

The next section is devoted to the determinatibnthe optimal capacity of the
honeycomb obtained under this problem as well sssigating on the profitabiity of the
honey business to the bee-farmers (beekeepers).

Dete mination ofthe Honeycomb Capacity and the Be€armer's profit

We shal begin by finding the maximum and minmuralugs of the capacity of the
honeycomb whose capacity and surface area areedlefin egns(22) and (2.3)
respectively. Substituting eqgn (2.3a) in egn (3ig)ds

k
V== (Sx2 - ax3) (31
B
k=0,a >0,>0andSis assumed to be fixed.

dv
Differentiatng V with respect to x n eqgn (3.1)dasett'ngd— = 0 for the criical ponts
X

yield.
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x =0, o, X =—
3
2
We have v _k (2S - 60x)
dx> B
d2v 2S | |
—— <0 when x =—— gving the maximum pointx{zy)
2S
as ¥ax= —
3a

and the maximum volume @Q4)is given by

4kS3
27028

max =

Similarly,

2
d—\Z/ > (0 when x = 0 giving the minimum point (x) as %n = 0 and the
dx

minimum volume is gven by Mn =0.

\%
Vmax ———————————

0 Xmax

Fig. 3.1

Again,
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3
Vmax = 4k—S (32)

27a ZB

Egn (3.2) suggests that the maximum volume camdreased if k (i.e. n) is increasedy

and 3 decreased, as well as having larger surface aifldsese factors suggest that a bee-
farmer has to get several hives in order to neredlais output. However, an approximate
formula for the total yield obtained after the hiarvest is determined here.

Let {uk}E:O be a sequence of successive yelds obtained byedatmer. Define this

sequence by
W+ =al, >0 a>1 (3.3
Egn(3.3) is vald sihce the business of honey mtooln is very lucrative, that is,

Us+1 > W. Egn (3.3) is a first order difference equatioae(SVyiie, 1966). On solving egn
(3.3) we obtain

b =adU, nz0 (349
Eqgn (3.4) is a geometric sequence having the sum

n
S, =3u
n k:0k

n
= yaku,
k=0

Nk
=u, >a
°k=0

= [&Juo (35)

a-1

Since a>1 $—»» as o—» oo,(n is time) that B, the total yield increasdmitely

as the tme ncreases nfinitely. In reality, ttem in egn (3.5) should converge to some
Imit since the comb or hive cannot grow indefipitand also the hive or comb cannot kst
for ever. Therefore, for a fnite time ( i.e n)ewhave a finite total yield (F Egn (3.5)
gives the total yield of the bee-farmer after tiie harvest. If we assume thaj us the
intial capital nvested on the business, then vae titerpret egn (3.5) as the total amount
reaized after the nth harvest, takingas the inital capital. It is easy to see that=Sw, S1
=, + ay and so on.
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Conclusion

A self-organizaton process nvoling the colony lofes was presented n this paper. The
behaviours of the working functons were obtainddwas found that each side of the

hexagons on the cross section of the honey combildsime a positive monotone
increasing function.

Furthermore, the optimal capacity of the honeycooobstructed by the bees during the
self-organization process was obtained and canrbdoged to advise the bee-farmers to
have sewveral hives for increased output. The fig&dd after the nth harvest was also
obtained. It is clear from eqn(3.5) that huge prafvaits any farmer who ventures into the
bushess of honey production. It is planned thaloglie with some business experts in
honey production wil be embarked upon to ascertam degree to which our theory
agrees with practical situations.
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