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Abstract 
 
A mathematical procedure on the self-organization process involving the colony of bees 
which results in the construction of the honey-comb having hexagonal cross section  and 
optimal capacity is presented in this paper. The optimal capacity of the honey comb as 
well as the bee farmer’s profit are also considered. We employ the notion of the distance 
function in our presentation. 
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Introduction  
 
In nature, there exists the phenomenon of systems which at a stage look certain to be going 
to end up in a state of confusion, chaos, uncertainty or instability but just emerges into a 
state of order, stability, regularity without a visible control agent or external influence 
being responsible for this turn around. These are the systems being referred to by some 
cyberneticians as ‘self-organizing systems’ 
 
A self-organizing system is one which controls itself implicitly. One of the meanings of 
self-organizing systems is that a “self-organizing system is one that changes itself from a 
bad way of behaving to a good one”. This meaning is particularly interesting to us because 
of the word “itself” in the definition. There is no separate control unit that effects the 
change. The system changes itself. For this (Ashby’s) definition of self-organizing system, 
we refer to Adeagbo-Sheikh, (2003). 
 
According to Beer, (1978), in his definition of self-organizing systems, “in nature, the 
structure of control -its effective organization- is not monitored by a pantheon of directors 
which decide to change the structure. The structure just changes”. Adeagbo-Sheikh, 
(2003) gave a very general conceptual model on the theory of self-organizing systems. In 
his model, “a self-organizing system is a dynamical  system such that whenever its 
trajectory includes a certain point A, then it must (even in the face of disturbances) later 
include a certain point B”. Beer, (1978) cited concrete examples of self-organizing 
systems. For instance, the case of certain species like the cabbage aphides which, by the 
rate at which they reproduce could overrun the earth but are maintained in nature at a well 
manageable population level. Also, the human form which in every case develops with 
parts growing in definite stable proportions. The bees by their jostling, falling and random 
movements construct honeycombs that are hexagonal in cross section and of optimal 



 130 

design as regards capacity as if the bees were engineers that calculate and employ 
sophisticated instruments that produce this regular design. There are many other examples 
of self-organizing systems cited in Beer, (1978). However, in this paper, we shall be 
interested in presenting a mathematical procedure on the self-organization process which 
results in the construction of an honeycomb of hexagonal cross section and optimal 
capacity. The optimal capacity of the honeycomb as well as the farmer’s profit are also 
considered in our presentation. 
 
Actually, the bees are prudent planners as they always plan ahead of (tough) time. Due to 
the fact that their movement is restrained during the rainy season, the bees prepare and 
store food safely during the dry season for the rainy season. This food is known as honey. 
It is interesting to remark that the bee colony is well-organized in the sense that the bees 
employ the principle of division of labour in carrying out their activities during honey 
production. In the colony, there is the queen, the workers and the duly committed soldiers. 
Whenever there is an external attack, the soldiers are battle-ready to wage war so as to 
resist the attack. While some workers look for flower nectar and other ingredients 
necessary for honey production, others fetch water for the same reason. Moreover, man 
has remained as the co-competitor with the bees in the sharing of honey produced because 
of its medicinal and economic values to the mankind. Various methods of beekeeping for 
honey production are available. For instance, see Killion, (1951), Rope, (1962) and 
Savage, (1961). 
 
The working functions for the self-organization process involving the colony of bees 
which results in the construction of an honeycomb of optimal capacity and hexagonal 
cross section will be determined in the next section. 
 
 
De te rmination of the  working functions for the  se lf-organization proce ss involv ing 
the bee colony. 
 
We first recall the following definitions: 
 
Defin ition  2 .1 : The distance function  (g(t)) is the distance from the goal at time(t) 
satisfying the following properties: 
 

(i) g(to) > 0 , t0  ≥ 0 

(ii)  )(tg′  < 0 , 0 ≤ t0 < t < t1 < ∞ 

(iii)  g(t1 ) = 0, 0 ≤ t0 <t1 < ∞  
(iv) | g′ (t)| < ∞  

See Adeagbo-Sheikh, (2003) for this definition. 
 
Definition 2.2 : The working functions are those functions whose values correspond to 
the attainment of self-organization during  a self-organization process. See also 
Adeagbo-Sheikh, (2003). 
  
We now formulate the problem as follows:  
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Since the cross section of an honeycomb is characterized by a number of hexagons, 
then the volume (V) of an honeycomb  becomes a function of its height (h) and the 
area of the entire number of hexagons. We assume that the hexagons are regular 
throughout this paper. Let the length of each side of the hexagon be x.  
 
Volume  (V) = area of base × perpendicular height  
i.e  V  = Ah      (2.1) 
 
where A is the area of the entire number of the hexagons and A is taken as the base 
area of the honeycomb; h is the thickness of the honeycomb and it is regarded as the 
perpendicular height. 
 
area of an hexagon = 6. ½ x2sin 60o 

              = 2
2

33 x  

Therefore, A = 2

2

33
nx , where n is the entire number of hexagons in an honeycomb.  

 
We assume that the thickness of each hexagon is negligible. Thus, the volume of an 
honeycomb is given by: 
 

 V = 2

2

33
nx h,  x ≥ 0, h≥0,  n ≥ 0, 

i.e  V = k  x2h, x ≥ 0, h ≥ 0      (2.2) 

where  k  =
2

33 n, k ≥ 0,   

 
The total surface area (S) of the honeycomb is assumed to be a linear combination of x 
and h.  That is,  
 
   S = αx + βh, α > 0, β > 0,      (2.3) 
 
where α  and β are constants having the dimensions of the length. Moreover, α and β 
can be determined experimentally. A suitable experiment that can be suggested is to 
measure S, h and x for various honey-combs from which a suitable graph can be 
plotted. The values of α  and β are then determined as the gradient and intercept of the 
line of best fit on the vertical axis. 
From eqn ( 2.3), 
 

  
β

α−= xS
h        (2.3a) 

 
By parametrizing eqn (2.3a) in t, we obtain 
 

  
β

α−
=

)()(
)(

txtS
th      (2.3b) 
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where t is the time variable, h(t) does not grow indefinitely with time. The function 
h(t) in eqn (2.3b) is called the distance-from-goal expression for the colony of bees 
which is self-organizing to construct an honeycomb of hexagonal cross section and 
optimal capacity (see Adeagbo-Sheikh 2003). Our assignment is to choose the 
functions S(t) and x(t) so that eqn (2.3b) becomes a distance function. This will be the 
distance function corresponding to the colony of bees which is self-organizing to 
construct an honeycomb having hexagonal cross-section and  of optimal capacity.  
 
S(t)=S*(t) and  
x(t) = x*(t) so obtained under this situation will be called the working functions for the 
self-organization process. 
 
In order to be able to find the working functions for the self-organization process, we 
must recall the following results. 
 
Theorem 2.1 : Let g(t) be  a smooth function of t.  Then, g(t) is a distance 
function for a self-organizing system, denoted by stt(to,t1,), if and only if g(t) is 
expressible in the form 
 
 g(t) = (t1-t)ω(t)      (2.4) 
 
where ω(t) is a smooth, positive function in the open interval (t0,t1)  such that 
ω(t)>(t1 – t)ω1(t). 

 
Corollary 2.1: A sufficient condition for smooth function g(t) to be a distance function for 
a self-organization process stt(t0,t1)  is that g(t) be expressible in the form 

 g(t) = (t1-t)ω(t), 

where ω(t) is a smooth, positive monotone decreasing function in (t0,t1). 

See Adeagbo-Sheikh (2003) for the proofs of the Theorem and its corollary. 

Re-writing eqn (2.3b) in the from of eqn (2.4) yields  










−β
α−−=

)(

)()(
)()(

1
1 tt

txtS
ttth       (2.5) 

The 2-jet of 
tt −1

1
with the constant term is given by  

3
1

2

2
111

11

t

t

t

t

ttt
++=

−
       (2.6) 

See Bruce and Giblin (1992) for detail on the k-jet of functions. 
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Type (2.6) equation is often made use of in equation type (2.5) to avoid singularity at t=t1. 
Thus, the transformed function   becomes 
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where ω(t) = ( ),)()(
11
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


++

β
 0 ≤ t0 < t < t1. 

 
The first main result, herein given as Theorem 2.2, provides the conditions under which 
eqn (2.7) represents the distance function for the colony of bees which is self-organizing to 
construct honeycomb of hexagonal cross section and of optimal capacity. 
 
Theorem 2.2: The function H(t) defined by eqn(2.7) becomes a distance function for the 
colony of bees which is self-organizing to construct honeycomb of hexagonal cross 
section and optimal capacity if the following conditions hold: 
 

(i) H(to)>0, t0 ≥ 0 
(ii)  If  H(t)  is a positive monotone decreasing function,  then  

|,)()(|)2
11

2(|)()(|)12( txtStttttxtStt ′α−′++<α−+  

    0 ≤ t0 < t < t1<∞ ; 
   (iii)        H(t1) = 0, 0≤ t0,<  t1 < ∞ ; 
   (iv)       S(t) is a positive monotone decreasing function ; 

(v)    x(t) is a positive monotone increasing function ; 

(vi)     x(t) is bounded above by α
|)(| tS , i.e |x(t)| < 

α
|)(| tS
 . 

 
Proof (i): From eqn (2.7), 
 

H(to) = ))()((
1

)(
1

3
1

2

2
11

1 oo
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o txtS
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Since β >0, t0 < tI , 3
1

2

2
11

1

t

t

t

t

t
oo ++ >0, then H(t0)>0 when S(t0)-αx(t0)>0,  

 
that is, 
 

H(t0)>0  when x(t0) < ,
)(

α
otS

α >0 , thus  proving (i). 
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Proof (ii): Observe that  
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Since t1 – t > 0 in eqn (2.7) for t < t1, then H(t) is a positive monotone decreasing function 
when ω(t) is a positive monotone decreasing function by corollary (2.1). Therefore, 
differentiating eqn(2.7) yields  
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 = -ω(t) + (t1-t)ω′ (t) 
 
 < 0,  since ω(t)>0 for S(t)-αx(t)>0, 
 

and ω′ (t)<0.   
 

for 
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


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( S′(t)-α x′ (t)) < 0  

 

i.e (t1 +2t)(S(t)-αx(t))+(t2 +  t1t  + t21 )( S′ (t)-α x′ (t)) <0. 

 

(t1+2t)( S(t)-αx(t)) >0, (t2 + t1t  +  t21 )( S′ (t)-α x′ (t)) <0, 

 

since t1 + 2t > 0,( S(t)-αx(t))>0, (t2 + t1t  +  t21 ) >0. 
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It implies that  ( S′(t)-α x′ (t)). must be negative i.e ( S′(t)-α x′ (t)) <0. 
Therefore,  
 

(t1+2t)( S(t)-αx(t))< - (t2 + t1t  +  t21 )( S′(t)-α x′ (t)) . 

 
so that 
 

|(t1+2t)( S(t)-αx(t)) | < | - (t2 + t1t  +  t21 )( S′ (t)-α x′ (t)) | 

 

 |(t1+2t)||( S(t)-αx(t)) | < | - (t2 + t1t  +  t21 )||( S′(t)-α x′ (t)) | 

 

i.e |(t1+2t)||( S(t)-αx(t)) | <  (t2 + t1t  +  t21 )|  (S′ (t)-α x′ (t)) | 

 
Hence,  if H(t) is  a positive monotone decreasing function  then  
 

(2t+t1)| S(t)-αx(t) |<(t2 + t1t  +  t21 ) |( S′(t)-α x′ (t)) | 

 
This concludes the proof of (ii). 
 
Proof (iii) : putting t = t1 in eqn (2.7) yields H(t1)=0,  thus proving condition (iii). 
 
Proof (iv) & (v) :  From the proof of (ii) above ,  
 
ω(t)>0  when S(t)-αx(t)>0  and ω′  (t) <0  when S′ (t)-α x′ (t)<0. 
 
We assume that S(t)>0 and x(t)>0 for S(t)-αx(t)>0 gives H(t)>0, or ω(t) >0. 
 
Also, S′ (t)<0, x′ (t)>0, α>0, since S′(t)-α x′ (t)<0. It follows that S(t) is  positive 
monotone decreasing while x(t) is positive monotone increasing. 

Proof (vi): Since S(t)-αx(t)>0, then 
α

<
)(

)(
tS

tx   from which we obtain 
α

<
|)(|

|)(|
tS

tx    

 
t0 < t < t1 < ∞ . 
 
Hence, the proof of the theorem is complete.  
 
The next result, which follows from Theorem 2.2, guarantees the choice of the working 
functions for the colony of bees which is self-organizing to construct honeycomb of 
hexagonal cross section and optimal capacity.  
 
Theorem 2.3: Suppose that in the expression for H(t) in eqn(2.7), the following  
choices are made: 
 
S(t)=S*(t)=c1tγ, c1>0, γ<0 x(t)=x*(t) = c2 tm,m>0, c2>0. Then,  
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H(t) in eqn (2.7)  reduces to a distance function for the self-organization process of  
the colony of bees resulting in the construction of an honeycomb of hexagonal  
cross section and of optimal capacity. 
 
 
Proof: Substituting for S(t) and x(t) in eqn (2.7) yields  
 

l(t)=(t1-t).  
β
1
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
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

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
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ω’(t) < 0  for 
 

 

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(γc1tγ-1- mαc2tm-1),  

 
ω(t) > 0  for  c1 >α c2tm-γ. 
 
Therefore, by corollary (2.1), l(t) is  in the form 
 
 g(t)= (t1-t)ω(t). 
 
So, l(t) is a distance function for the colony of bees which is self- organizing to  
construct an honeycomb of hexagonal cross section and optimal capacity. Hence,  
the choice S*(t)=c1tγ, c1 > 0, γ < 0; x*(t) =c2tm, c2 > 0, m > 0 appropriately  
represents the working functions for the self-organization process. 
 
The sketch of the graph of l(t) is shown in the figure 2.1 below.  
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 The next section is devoted to the determination of the optimal capacity of the 
honeycomb obtained under this problem as well as investigating on the profitability of the 
honey business to the bee-farmers (beekeepers). 
 
 
De te rmination of the  Honeycomb Capacity and the  Bee-Farme r’s profit 
 
We shall begin by finding the maximum and minimum values of the capacity of the 
honeycomb whose capacity and surface area are defined in eqns(2.2) and (2.3) 
respectively. Substituting eqn (2.3a) in eqn (2.2) yields 
 

 )( 32 xSx
k

V α−
β

=    (3.1) 

 
k ≥ 0, α  > 0, β > 0 and  S is assumed to be fixed. 
 

Differentiating V with respect to x in eqn (3.1) and setting 
dx

dV
 = 0  for the critical points 

yield. 

l(t) 

0 t0 t1 

The Graph of Distance  function (l(t)) against time(t) 
 

Figure   2.1 

l(t1) =0 , 0<t0<t1<∞ 

t 
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  x = 0,   or ,  x  = 
α3

2S
 

 

We have )62(
2

2
xS

k

dx

Vd α−
β

=  

 

0
2

2
<

dx

Vd
 when  x = 

α3

2S
 giving the maximum  point (xmax)  

 

   as   xmax =  
α3

2S
  

 
and the maximum volume (Vmax) is given by  
 

  Vmax = 
βα2

3

27

4kS
. 

 
Similarly,  
 

  0
2

2
>

dx

Vd
 when x = 0 giving the minimum point (xmin) as xmin = 0 and the  

 
minimum volume is given by Vmin  = 0. 

 
 
Again, 
 

0 

V 

xmax 

V max 

α
S

 
X  

Fig. 3.1 
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 Vmax  = 
βα2

3

27

4kS
      (3.2) 

 
Eqn (3.2) suggests that the maximum volume can be increased if  k  (i.e. n) is increased, α 
and β decreased, as well as having larger surface area.  These factors suggest that a bee-
farmer has to get several hives in order to increase his output. However, an approximate 
formula for the total yield obtained after the nth harvest is determined here.  
 

Let { }n
kku 0=  be a sequence of successive yields obtained by a bee-farmer. Define this 

sequence by 
 
uk+1 = auk , u0 >0, a >1       (3.3) 
 
Eqn(3.3) is valid since the business of honey production is very lucrative, that is, 
 
uk+1 > uk. Eqn (3.3) is a first order difference equation (see Wylie, 1966). On solving eqn 
(3.3) we obtain  
 
un = anu0,  n ≥ 0         (3.4) 
 
Eqn (3.4) is a geometric sequence having the sum  
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Since a > 1, Sn          ∞  as  n           ∞,(n is time)  that is, the total yield increases infinitely 
as the time increases infinitely.  In reality, the sum in eqn (3.5) should converge to some 
limit since the comb or hive cannot grow indefinitely and also the hive or comb cannot last 
for ever. Therefore, for a finite time ( i.e  n), we have a finite total yield (Sn). Eqn (3.5) 
gives the total yield of the bee-farmer after the nth harvest. If we assume that uo  is the 
initial capital invested on the business, then we can interpret eqn (3.5) as the total amount 
realized after the nth harvest, taking uo as the initial capital. It is easy to see that So = uo, S1 
= uo + auo and so on. 
 
 
 
  



 140 

Conclusion  
 
A self-organization process involving the colony of bees was presented in this paper. The 
behaviours of the working functions were obtained. It was found that each side of the 
hexagons on the cross section of the honey comb should be a positive monotone 
increasing function. 
  
Furthermore, the optimal capacity of the honeycomb constructed by the bees during the 
self-organization process was obtained and can be employed to advise the bee-farmers to 
have several hives for increased output. The total yield after the nth harvest was also 
obtained. It is clear from eqn(3.5) that huge profit awaits any farmer who ventures into the 
business of honey production. It is planned that dialogue with some business experts in 
honey production will be embarked upon to ascertain the degree to which our theory 
agrees with practical situations. 
 
 
Re fe re nces 
 
Adeagbo-Sheikh, A. G. (2003). A Model for Self-Organizing Systems, Kybernetes : The 

International Journal of Systems & Cybernetics, 32 No.9/10,1325-1341. 
Beer, S. (1978). Decision and contro l, John Wiley & Sons Ltd, New York. 
Bruce, W. J. and Giblin, P.J.  (1992). Curves and Singularities, Cambridge University 

Press, Cambridge. 
Killion, C. E. (1951). Honey in the Comb (Paris, III : Killion & Sons Apiaries), 114pp. [B, 

153/52) 
Rope, C. G. (1962). Production of Section Comb Honey, N.Z.J.l  Agric. 105(4):363,365 

[B,379/63]. 
Savage, J. H. (1962). The Production of Section Comb Honey, Scot. Beekpr.  38(41), 197-

198 [B,280 L/62]. 
Wylie, C. R. (1966). Advanced Engineering Mathematics, 3rd Edition. McGraw-Hill Book 

Company. 
 


